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intersect only at the boundaries:
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More tilings
Tilings with finitely many tiles up to translations

 

 

 

 

 

 

 

 

 



Periods
A period is a vector v ∈ Rd such that τ + v = τ



Periods



Shifting a row in the grid



We now have periods in one direction only



Non-periodicity

A tiling in Rd is called periodic or strongly periodic if there exist d
linearly independent periods.

In the first examples there where periods in 2 directions in R2 and
so the tilings are periodic.

It is called non-periodic if there are no periods.
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Interesting questions

Are there tilings which are non-periodic but have no local
symmetry break?

That is - can a tiling that “looks the same” everywhere, namely
does not exist a place which by looking at a local neighborhood
you can say exactly where you are, be non periodic?

[Such tilings are caller repetitive: for every r > 0 the exists R > 0
so that every ball of radius R contains all patterns that can be
seen in a ball of radius r ]

Is there a finite set of tiles that can tile Rd only in
non-periodically?
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Penrose says YES!!!



And he should know



More interesting floors
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Substitution tilings

After the substitution - inflate

, and substitute again...
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Substitution tilings

The substitution and inflation process gives to tilings of larger and
larger domains.

These can be used to defined infinite tilings of Rd (for example
using compactness arguments, infinite graph theory, existence of
fixed points under the substitution inflation process)

In any case in any such tiling every pattern which appears is a
translation of a sub-pattern of one of the tilings of the finite
domains described in the process.
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More examples of substitutions
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Multiscale substitution schemes

We can expand our definitions, and allow more than one scale to
appear in the substitution rule

These schemes can define sequences of partitions:

Partition πm is defined by substituting all the tiles of maximal
volume in πm−1 according to the substitution rule.
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They can define tilings



Sometimes they can define fractals

Scales are τ, τ2, τ3, where τ + τ2 + τ3 = 1.



Kakutani sequences
The scheme illustrated by

generates two very different sequences of partitions.

The first is by recurrent substitutions of all intervals simultaneously

The second is by always substituting only intervals of maximal
length

The first sequence is not nicely distributed, but the second one is
(this is not a trivial fact..)
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A nice question

In the 1
3 -Kakutani sequence, whenever a partition is made, color

the shorter new interval red and the longer new interval blue:

1. Does the limit of |Number of red intervals|
|Total number of intervals| exists?

Yes! It’s 2
3 .

2. Does the limit of Length(
⋃

{Red}) exist? Yes!
1
3 log 1

3
1
3 log 1

3 + 2
3 log 2

3
.

3. In case the limits exist, are they necessarily the same? No!
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Substitution matrix

Let an, bn be the number of blue and red triangles in the nth
iteration.

(
a0
b0

)
=
(

1
0

)
,

(
a1
b1

)
=
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2
1

)
,

(
a2
b2

)
=
(

5
3

)
(

a3
b3

)
=
(

8
5

)
,

(
a4
b4

)
=
(

13
8

)
, . . .

So
(

an
bn

)
=
(

Fn+1
Fn

)
, where Fn is the Fibonacci sequence

Fn = 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, . . .!
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Ratio between types of tiles

Now if there were periods in two different directions, then by
counting how many tiles of each type there are in the
parallelogram they span we would be able to compute the ratio
between the number of blue triangles and red triangles.

It follows that an
bn

→ c ∈ Q.

But the ratio Fn+1
Fn

tends to the golden ratio ϕ = 1+
√

5
2 , and so

an
bn

= Fn+1
Fn

→ ϕ 6∈ Q

and we have a contradiction!

Showing that in fact there are no periods at all is slightly more
difficult, but it is definitely true!
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Just ask Penrose!




